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The problem mentioned in the title is reduced to an integro-differential equation of 
Prandtl type with a Hilbert kernel for which an approximate solution has been given in 

PI. 
The method of orthogonal polynomials @] is utilized herein for the approximate solu- 

tion of this equation (which is also encountered in other branches of mathematical phys- 

ics), It can be stated that the method elucidated herein leads to the results more simply 

and rapidly. This permits giving a numerical realization of the proposed method in a 
comparatively small amount of calculations. 

1. Let elastic coverings with cross-sectional area F be welded (glued) to an infinite 
plate (half-plane) of thickness h at finite segments from its boundaries 

[_ a $- %nl, 0 + Ml, (1 > a, n -= 0, + 1, . ..) 

As has been shown in [l], seeking the contact stress t (5’) originating along the line of 

contact between the covering and the half-plane is associated with the solution of the 
following equation : a 

4 -- 71 
7 q’ (?I rlll = g (5) (I a I < n) (1.f) 

--a 

Here El, E, are, respectively, the elastic modulus of the covering and the half-plane. 
The required solution t (.z’) should be subject to one of the equilihrillm conditions 

(1.‘) 

--n -a 

Here U c!enotes the resultant of all the forces applied to the covering. 

Let us put i a 

c 
t(n)dn =+ _ s 

sign (4 - rl) r (rl) dn t- $ 
1, --a 

Taking account of this latter expression (1.1) can be written as 
X 

SL 

1 
ysign(E-n) +&Clg ql,(rl)dn=iK) (IaI<n) 

--a 
(/ (5) = g (4) -- a /Ipall) 

(1.3) 

2. Formulas from the handbook [3] are often utilized below. For brevity, let us indi- 
cate just the number of the formula without repeating the source each time. 

The proposed approximate method of solving Eqs. (1.3) or (1.1) is based on the follow- 
ing relationships for the Chebyshev polynomials: 

140 
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a 

s ctg E - rl Tm (tg VI ctg ‘/P) d’I 
2 

_ J 

f/z cos q - 2 cos a cos ‘12 rl 1, m 03 
--a 

J1,o (5) = - n set l/za tg lid (m = 0) 

J 1, m (4) = - n csc ‘/22 (set ‘/2Q2 U,_, (t,g l/24 ctg 1/Z a) (m=1, 2,.:.) 

1 a T, (ts WI ctg %a) dil 
T 
2 c 

-"a 

Sign"-~'~2cos~-2cosa COS1/2~ ~ = J,,, (4) 

(2.1) 

(2.2) 

JZ,O (E,) = set l/=2 a arcsin (tg ‘12 E ctg I/Z ‘L) (m=O) 

J ?, m (E) = - (m sin a cos l/2 E)-’ V/a cos 4 - 2 cos a Urn_, (tg ‘12 t ctg 72 z) (m = 1, 2, . . .) 

Here Tm(5), Unl(x) are, respectively, the Chebyshev polynomials of the first and 

second kinds. 
To prove (2. l), let us start from the known relationship 

1 

c 

T, (Y)&I 

‘1 
lnis--?" 1/1--?/2= 1 

- nln 2 

-fime1T,(2) :IIIIYl 2,...) 
(2.3) 

Making the substitution z = tgl/,E ctgll,a, ZJ = tg’/,r) ctglf,a and utilizing the known 
properties of trigonometric functions: we will have 

a E-rl 

c sin 2 
In 

T,,, (tgl,‘zq ctg’/za) drl 
cos l/Z 4 cos l/z 11 Jf/z cos q - 2 cos a 1 = J,, m (4) 

cos 12 rl 
(2.4) 

-‘Z 

J,,, (E) = - JI set l/, a In (2 ctq l/+) (m = 0) 

J,, (E) = - am-‘set llzaT,,, (tg'/,E ctg'/,a) (m = l,2,...) 

Differentiating (*) the last equation we obtain (2.1). 

The same substitution in the formula [4] 

4 $ sign (2 _ y) Fg = (“rcsin’ - 
(m = 0) 

y2 - m-l vi - 39 
-1 

U,_, (5) (m = 1, 2, . . .) 

results in the relationship (2.2). 

3. Let us seek the solution of (1.3) in the form 

t(E) = I/a c,:s,c”‘, COS c1 m=O 
5 X,T,(tg'(a5 ctg'bz) (3.1) 

Let us substitute (3.1) into (1.3) and let us utilize the relationships (2.1) and (2.2). 

*) The relationship (2.1) can also be obtained directly from formula 7.344(l) by means 
of the same substitution. We start here from (2.3) so as to obtain the spectral relationship 
(2.4), which is itself of independent interest. In particular. it permits giving the solution 
of the integral equation of the periodic contact problem [S, 61 in the form of an infinite 
series of Chebyshev polynomials. Such a form of the solution will sometimes be preferred 
as compared with the solutions in the form of quadratures obtained in [S, 61. 
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Then let us multiply the equality obtained by 

f/z cos 4 - :! cos a >: SRC ‘/,F, lJ, (tg ‘I& cl q ‘;,a) 

and let us integrate with respect to t between the limits (-a- CC). Utilization of the 

orthogonality properties of the Chebysliev polynomials (rephrased for the variable F;j 

results in the following infinite system of equations in the unknown coefficients X, (no E 

=l, 2, . ..). 

(XI4h) Ctg’/zUSk+l + g N,_,, $Trn = c,x, - cos ‘jdJk (k = 0, 1, . .) (3.2) 

m-1 

Here 
1 

B m-1, FL = m 
(3.3) 

Ck = s [arc sin z - (z/ 2h) tg ‘/@I VI - s'"k (') dz 

1 + x2 (1s 1/2a)2 
th- _ 0 1 , 1. . ) 0.4) 

-1 

bk= \ 
,’ p (2) 1/l - x2uk (2) da: 

1 + x3 (tg +Zj2 
Ll 

(/i = 0, 1, .) (3.5) 

' p (x) -- f [arclq (z tg’iza)l 

The new variable I J’ I u = tg112~c@$/2a has been introduced in these latter 
expressions, for convenience, 

The coefficient X, is determined from the second equation of (1.2). Substituting(3.1) 
into the mentioned equation and utilizing the orthogonality condition of Chebyshev 

polynomials, we obtain X, == (R 1 Zh) COS’/,C~. 

Let us use the expansion cc, 
1 

1 + 2% (tg l/z a)” 
= 2 rtgy22 2 (--2)n(tgl/la)2n+1 u&q (1 al < n, 15 / < I) (3%) 

,I 0 

for a practical calculation of the coefficients Um_l,k and L’, . -- 
To verify this latter, both sides should be multiplied by 7/l - xaUZh (x) and integrated 

with respect to z between the limits (-1, 1). To evaluate the integral obtained in the 

left side, the function [I -I- x2 (tg1/,a)2]-1 should be replaced by its integral represent- 

ation given by 3. 893(2), the order of integration should be changed and 3.71x18) and 

6.611(l) used. 
Substituting (3.6) into (3.3) and (3.4) and using the formulas 

1 

c (1 - 2’) U, (I) U,; (I) U,, (xj dx - - 
4 (no + 1) (k + 1) (n +- I] lcos l/2 (m -I- /i + n) nJP 

< [(mm!- l)“- (k - n)‘] [(m-J,- I)‘2 - (k + n -!- Z)“J 
-1 

(m, /c. n = 0, 1, .) 

(k,n=== 0, I,...) t x v/1 u;, (X) s 1 i_ x2 (tg l/.2 a)2 dx = n sin I/& (ctg1/21)2 (tgl/,r)Ji+’ (k = 0, 1, . ,) (3.9) 

-1 
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we arrive at the following expressions for the coefficients B,_l,k and Ck: 

B m-l,k = -8 (k f- 1) ctg l/t a i (-l)n (2n + 1) (tg l/e a) “‘-’ I[ sin r{z (m + k) n]” 
_--- 

ln~’ - (2n - !i)%] [m2 - (2n + k + %)2] 
(3.10) 

n-:-O 
(m, k = 0, 1, . ..) 

C, = - B-l,k -((n(2~~)sin1f,knctg1C2s(tg1/l.)k’1 (k=0,1, . ..) (3.11) 

To verify (3.7)-(3.9), the substitution I = cos3 should be made and it should be 
taken into account that U,,, (c.os 3) = sin [(m + 1) 01 cos 8. Moreover, its integral repre- 

sentation already mentioned above should be substituted for the function 

[I -;- 22 (tgl/,a)“]-1 

and the order of integration should be changed. 
Because of the rapid convergence of the series (3.10). evaluation of the coefficients 

B m_l k does not involve much work. 
let’ us represent the function r (I’) as r (z’) =r+ (I’) + r- (z’),where z+ (2’) and r- (5’) 

are the even and odd parts of the function r (zJ), respectively. It is seen from the struc- 

ture of the terms B,_l,lz that the system (3.2) decomposes into two, one of which con- 
tains the unknowns X, with even subscripts (the even problem, r (z’) = z+ (z’)), and 
the other with the odd subscripts (the odd problem, r (I’) = r- (x’)). In the first case 
the loading acting on the covering should be skew-symmetric (p (CC) = p-(s)), and in 
the second symmetric (p (L) == p+ (5)). To obtain the solution of the even problem m 

should be replaced by 2m and k 11y 2k + 1 in (3.2)-(3. 5), (3.10) and (3.11). The odd 
case is obtained from the same formulas by replacing m by 2m + 1 and k by 2k. 

Let us examine two particular cases of loading the coverings. Let the covering be 
loaded by two forces of magnitude U.5P each, applied to the covering endfaces and direc- 
ted to one side (from left to right). In this case 

JJ (5) s 0, r (2’) == 2+ (z’), bzk = b2k+l = 0 (k = O,l, . ..). X, = (P / lh)cos’i,a. 

From the equilibrium condition for an element of the covering it is easy to obtain a 
formula to compute the normal stresses in the section z’ of the covering. The correspond- 
ing formula for the variable 5 = X’ / a is 

C (ax) = (lll/nF) set 1/Z J 
[ 

X0 arc sin x- 7/1 - x2 i (2W1 Xs,&&] 
Vl=1 

Let us present a formula to compute the contact stresses r (2’) written in tile variable 

z- z’la 
+ (ax) = 1- _ 1 + x2 (tg II2 a)” 

2 sin ‘I2 a 7/G” m_ o X2mT2m tx) 5 
(3.1”) 

When the forces applied to the covering endfaces stretch it (the odd problem), we have 
the analogous results p (z) = p+ (z) :--= nP / 2h1, x,, = 0 

b alc =y 0, b,,;,l = ($P / 2hZ) (-i)k COS~/~C( ctglIza (tg1/4a)2’t1 (k = O,l,...) 

The contact stresses r- (ax) can be computed by means of (3.12) if 2n~ is first replaced 

bY “m -t 1. 

The relationship 
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which is verified exactly as is (3.91, was used in computing the coefficients b,. 

4, Let us investigate the system (3.2). Let us first find for which values of the para- 
meter h will the system be completety regular. To this end let us estimate the sum 

CC 

Let us put 

(m = 1,2 . . . . . k = OJ,...) 

The ~~iakowski inequali~ for the sums yields 

(4.1) 

The coefficients of its expansion in a series of polynomials U,_,(~f (m= $,2,...) will 
be D m_1, ),._ The completeness (closure) condition of this system is 

Smce uj,2 (5) -+ y ,i, (1 I / < l), it is then easy to estimate this last integral, and then 

Summing the first series in (4. l), and taking account of the above, we obtain 

sh.2 < =I&%~ (tgll,c@, s, \< 11, p%Th tg ‘l&c (4.2) 

In order for the system (3.2) to be completely regular, it is sufficient that the inequal- 
ity Sk < q < 2 be satisfied for all k (k = 0, I ,.., ) . Taking account of (4.2). this con- 

dition becomes h < Jf%-“ctg ‘i&z (4.3: 

The condition obtained is considerably broader than the condition h <,r/25 sin a 

obtained in fl]. 
Now, let us show that for any h (0 < h < W) the system (3.2) is quasi-regular, i.e. let 

us show that lim S, = 0 as k ---) 70. Since the system (3.2) decomposes into two systems, 
let us then investigate them separately. Let us start with the even case. In this case it 
is necessary to estimate the sum 

SC&, == (4%W t&r ‘/a q ; / &wt-1,zic+l J (4.4) 

77l==l 

Let us first note that the estimate 
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IB2m_1, s,,.+&l /(Jr + 1) + 2rr. (set 1/3 z)“/ (4k + 3) (4k + 5) (m = k -t_ 1, h- = 0, 1, . ..) 

,.‘m--2k~-2/+1+,2m--2k~-2/-_1+ (4.5) 
1 

-I- 2m+Zk+3 + 2m+‘,,+,) 
(m = 1,2, . . ; k = 0,1, . . ; m # k + 1) 

can be given for the coefficients B2m_1 2kT1 . 

To prove this latter inequality, the idkntity 

2 ii- I?) Us,,+1 (x) ush.+t (~1 = Tz,,,_sk._z (2) - Tzm+src+z (x) 

should be utilized in (3.3), the integral should be separated into two. and it should be 

taken into account that 
1 (4.6) 

s 
T,,n (s) dx 

I + 2% (tg ‘/t z)‘L 
-< lc 

1 1 

--I 
2 (cos~/~~)~ j 2m + 1 + 2m--1 i 1 

( I a I< 51, m = 1, 2, . .I 

To obtain the last estimate, z = cos0 should be substituted in the integral, and it 

should be taken into account that T, (cos 0) = cosm 8. Then utilizing 1.314(l), and 

integrating by parts, we obtain the estimate (4.6). Substituting (4.5) into (4.4) and sum- 
ming the series obtained by using 0.244(l) we obtain 

S 
‘a+1 6 

4h Q YZ a 11, (k + “/s) + Q (k + 2) - 24 (VJ + 9 (- k - ‘1s) + 2C 
2k + 3 

+ 9 ;“k + “/z) + W (h: + 2) - W (3/2) + 9 (- k + ‘/a) + 2C + 

+ 

2k -+ 1 
8 

+ (4k + 3) (4k + 5) I 8 (~0s;~ a)” + 
1 

k+i (4.7) 

Here >I# (z) is the Euler psi-function, and C the Euler constant. 

Taking account of the behavior of the function I# (5) as I - 00, the right side of(4.7) 
can be made arbitrarily small for any h for sufficiently large k, and therefore, the system 

(3.2) (in the even case) is quasi-regular for 

O<h<oo. 
An analogous result is obtained for the odd sys- 

tem. The condition of complete regularity of the 

system (3.2) can be indeed obtained from the 

inequality (4.7). however the result (4.3) obtained 
above is more accurate. 

6. Computations of 0 (a~) and z (a~) were 
performed by the formulas obtained above for the 

l? 

Fig, 1 

case when the covering was loaded on the endfaces, 
for different values of the parameters h and a. 

The values of o (ax) and T (a~) were computed for 

successively increasing numbers of the approxima- 
tion m. If CI (UT) or r (as) in the ( 1)~ + I )-th 

approximation differed from o (nz) or T (ax) in the 
nt th approximation by less than 5%, then the cal- 

culation process was stopped. 
The quantity of approximations needed depends 
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essentially on the parameter a and to a lesser degree on h. For example, for all h nor 
more than twice larger than the domain of regularity determined by means of (4.3). three 

approximations are sufficient to compute T (a~) for a = 1/4~, and two to compute o (a.1 ). 

For O. m= 311dsc six approximations must be taken to compute T (ax).and four to compute o (u). 

The explanation of the mutual influence of the coverings is quite important. This 
influen,e evidently depends primarily on CL. However, it has been clarified that it also 

depends on the parameter 1~ _ ). / CI = E,ah / 2E,F. Calculations were performed for 

different values of the parameters p and CL when the covering is loaded along the end- 

faces (where as above, the problem was separated into even and odd). The results of the 

calculations are presented in the table where the maximum deviations of the stresses, in 

absolute value, from those in the case when there is just one isolated covering, are indi- 
cated in percentage. Here, not the stresses themselves were compared in the case of the 
tangential compact stresses, but their values multiplied by a function with a singularity. 
The mentioned deviations were observed mainly in the neighborhood of the ends of the 

covering. The quantity of approximations m in the stress computation was taken so that 

o (a~) or T (05) in the (m + 1 )-th approximation would not differ from the G (a~) or T (a.:) 
in the mt!i approximation by more than several units in the third significant figure. 

Presented in Fig.1 are graphs of o (az)and t (ax) for t& = 1 (for the computation 
scheme shown there). Curves 1 and 2 refer to the cases CL = 4/,n and CL = 2i3n , respec- 

tively. The dashes show the corresponding stresses for the case of one isolated covering. 

The values of u (a~) presented in the graph should be multiplied by P / F, and those of 

7 (ax) by P I ah. The calculations were also performed for the parameters a =l/@; 2/jz 

and l/,n. The corresponding curves (which are not shown in the graph in order not to 
complicate it inordinately) are located between curves 2 and the dashes. For CI m= l/,x 
these curves practically coincide with the dashes (the maximum deviation does not 

exceed 15 % ). 
As is seen from Fig. 1, the presence of adjacent coverings can alter the stress diagram 

(curve 1) qualitatively as well as quantitatively. 
In conclusion, let us note that the problem considered here is equivalent to the contact 

problem for a half-strip (- 1 < x Q I, 0 f y < m) when an elastic covering is glued 

at the segment (-a < z < Q) to its finite face, and the vertical displacement and nor- 
mal stress are zero on the semiinfinite faces. 
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EFFEXT OF SHEARING FORCE AND TILTING MOOT 

ON A CYLINDRICAL PUNCH ATTACHED TO A 

TR~S~RSELY ISOTROPIC HALF-SPACE 

PMM Vol.35, Npl, 1971, pp.178-182 
V. I. FABRIK ANT 

(Received !$$%t 19, 1969) 

The effect of shearing force and tilting moment on a rigid punch, circular in plan view, 

and attached to a transversely isotropic half-space is considered. The distribution of 
shear and normal stresses under the punch is derived. Formulas are obtained which relate 
the angular and linear displacements af the punch to the magnitude of the shearing force 

and tilting moment. Let us point out that the nonaxisymmetric case of a cylindrical 
punch attached to an ispotropic half-space is solved in [I]. 

1, Let us consider a circular punch with radius a attached to a transversely isotropic 
half-space z >, 0. Let the punch be subjected to a shearing force I%, directed along the 

I -ixis, and a tilting moment Icf. Without restricting the general nature of the problem, 

we may assume that the moment is directed along the g-axis. Our problem is to deter- 
mine the stresses under the punch as well as the two displacements of the punch: trans- 

lation u0 and rotation 0. 
Let us introduce complex displacements u = ug + iuy and complex shear stresses 

Z =:. z,* $ i$.both in the plane z = 0 . Making use of the results obtained in @] we 
can write the expressions that determine the displacements of a point, having cylindrical 

coordinates (p, cp, 0) under the action of a concentrated force, with projections P,, P,, 

p,, applied at point (&, vo, 0) 

Here 


